Divide and Fuse: A Re-ranking Approach for Person Re-identification

نویسندگان

  • Rui Yu
  • Zhichao Zhou
  • Song Bai
  • Xiang Bai
چکیده

As re-ranking is a necessary procedure to boost person re-identification (re-ID) performance on large-scale datasets, the diversity of feature becomes crucial to person reID for its importance both on designing pedestrian descriptions and re-ranking based on feature fusion. However, in many circumstances, only one type of pedestrian feature is available. In this paper, we propose a “Divide and Fuse” re-ranking framework for person re-ID. It exploits the diversity from different parts of a high-dimensional feature vector for fusion-based re-ranking, while no other features are accessible. Specifically, given an image, the extracted feature is divided into sub-features. Then the contextual information of each sub-feature is iteratively encoded into a new feature. Finally, the new features from the same image are fused into one vector for re-ranking. Experimental results on two person re-ID benchmarks demonstrate the effectiveness of the proposed framework. Especially, our method outperforms the state-of-the-art on the Market-1501 dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Pose-Sensitive Embedding for Person Re-Identification with Expanded Cross Neighborhood Re-Ranking

Person re identification is a challenging retrieval task that requires matching a person’s acquired image across non overlapping camera views. In this paper we propose an effective approach that incorporates both the fine and coarse pose information of the person to learn a discriminative embedding. In contrast to the recent direction of explicitly modeling body parts or correcting for misalign...

متن کامل

Person Re-Identification by Support Vector Ranking

Solving the person re-identification problem involves matching observations of individuals across disjoint camera views. The problem becomes particularly hard in a busy public scene as the number of possible matches is very high. This is further compounded by significant appearance changes due to varying lighting conditions, viewing angles and body poses across camera views. To address this pro...

متن کامل

Region-Based Interactive Ranking Optimization for Person Re-identification

Person re-identification, aiming to identify images of the same person from various cameras configured in difference places, has attracted plenty of attention in the multimedia community. Previous work mainly focuses on feature presentation and distance measure, and achieves promising results on some standard databases. However, the performance is still not good enough due to appearance changes...

متن کامل

Deep-Person: Learning Discriminative Deep Features for Person Re-Identification

Recently, many methods of person re-identification (ReID) rely on part-based feature representation to learn a discriminative pedestrian descriptor. However, the spatial context between these parts is ignored for the independent extractor on each separate part. In this paper, we propose to apply Long Short-Term Memory (LSTM) in an end-to-end way to model the pedestrian, seen as a sequence of bo...

متن کامل

Discriminative Dictionary Learning With Ranking Metric Embedded for Person Re-Identification

The goal of person re-identification (Re-Id) is to match pedestrians captured from multiple nonoverlapping cameras. In this paper, we propose a novel dictionary learning based method with ranking metric embedded, for person Re-Id. A new and essential ranking graph Laplacian term is introduced, which minimizes the intra-personal compactness and maximizes the inter-personal dispersion in the obje...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1708.04169  شماره 

صفحات  -

تاریخ انتشار 2017